česky english

Research motivation and history

1995: An unknown phenomenon is observed.

This phenomenon showed that there was a direct relationship between gravity and electromagnetism. In terms of current theory, this is considered impossible. This invoked occasional inquiries and search for theoretical possibilities of explaining this phenomenon.

1999-2000: An essential idea comes out.

A new idea explaining gravitational phenomena and emergence of matter. This concept was named the Deficit Theory of Space. In terms of current categorizations, it is a unitary theory (not closed in mathematical terms, which a large freedom of possible solutions) based on a conservative approach, building on a simple fundamental principle. The acceptable number of spatial dimensions is limited to four; this is the only verifiable option. The theory is based on Einstein's geometrical view of space.

2007: Initiation of applied research project.

Theoretical concepts had developed to an extent allowing their verification by an actual high-capacity model, so-called ERB condenser.

October 21, 2008: SUPRATECH is founded

The newly established company takes over the project, initiating research activities on a semi-professional basis. .

2012: Initiation of basic research

The research addressed the verification of Maxwell's equations. We focused on the following essential - from our point of view, physically ungrounded conclusions and predictions:
1. Rectilinear motion of an electrically neutral wire in so-called homogeneous magnetic field should induce voltage in the ends of the wire. As the main proof, so-called Faraday's generator is considered for current electrodynamics.
2. The interaction of so-called homogeneous magnetic field with electrons in an electrically neutral wire moving through this field is, in terms of electrodynamics, equivalent to the interaction with separately moving electrons. As the main proof, so-called Faraday's motor is considered for current electrodynamics.
3. The actually mathematical law is, in Maxwell's equations, considered as a general physical law, claiming that the sectional (geometrical) change in the induction flux in so-called homogeneous magnetic field is the physical cause of induction of electromotive force (Faraday's law), representing a generalization, which combines a wide variety of phenomena into a single principle.

These conclusions and predictions are very difficult to verify by experiments without the use of Faraday's motor generator. It is the functionality of this homopolar generator or (inversely) motor, which is taken as a simple proof of validity at present. In practical electrodynamics, the experimental values cannot be reliably predicted unless dozens coefficients are used. The doubts mentioned in the previous paragraphs lead us to the design of the brushless Faraday's motor generator (or, as well call it, Pure Direct Motor Generator), which was to verify the theoretical assumptions in an equivalent manner. We failed, facing the question “what now”?

Our research was namely motivated by the presumption that mathematical logics, when applied to physical reality, can result in unrealistic fundamental errors and the at least one of Maxwell's equations (which were discovered around 1865 and have been taught as part of fundamental courses of physics study programmes) may represent a simplified and inexact interpretation of the reality.

News

1 


We are working on the publication of an experimental and mathematical demonstration of how a defined constant can make false theoretical conclusions in electrodynamics quite plausible, underpinning them with relatively large set of experimental data. An analysis will be published, showing why Sir James Clerk Maxwell made a physical mistake when he was trying to create a simple, generally applicable mathematical description of electrodynamics. Among other topics, the paper will reveal the “physical trickster” hidden in Faraday's generator, which leads to the false impression that the Lorentz force is a product of the movement of a conductor in a radially homogeneous field.

You can learn much more in the experimental lectures in our offering.


The main driver for the verification of Maxwell equations consisted in the doubts that the electrical intensity generated in a large enclosed conductive loop could “be interested” in a change of homogeneous induction flux somewhere in the centre of the area enclosed by that loop. We see it as physically doubtable that the movement of a conductor in this homogeneous field represents an equivalent result and that this mathematical conformity (Stokes’ theorem) represents a general physical law.
You can learn more in the fifth paragraph in the “Motivation” section.


At the academic lectures held within the basic physics programme, you will learn that in a conductor, which is in uniform linear motion, a DC voltage is induced (Faraday's generator is considered as evidence).
This would mean, indeed, that such a conductor could perform labour without slowing down its motion if we were able to utilize this voltage. In Maxwell's equations, electrically neutral conductor is handled in the same manner as it was made of a glass tube filled with electrons (Biot-Savart-Laplace law). The emergence of electrical intensity in an electrically neutral conductor is thus explained in a manner based on the description of the motion of a separate electron without considering the external environment of the conductor.

Within our research, we have come to the conclusion that there is an apparent experimental coincidence, which is only caused by the methodology of definition of physical constants, which includes certain physically incorrect aspects. We have proven that what applies to separate electron does not apply equivalently for electrons inside a conductor, which is masking their charge.


Why are we interested in the interaction between the surrounding magnetic field and conductor and not in the changes in the induction flux?

You can find the experimental proof that the academic notion is not based on actual data as well as the answer to the previous question in the “Demonstration” in the second paragraph.